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We consider the problem of estimating the unknown changepoint in a sequence of time- 
ordered observations. Upper and lower bounds are derived for the asymptotic distribution 
of the maximum likelihood estimator and methods of approximation are suggested. A 
computationally efficient algorithm is presented for deriving the bounds and approxi- 
mations for the asymptotic probabilities of the maximum likelihood estimator when the 
parameters before and after the changepoint are unknown. We also show an essentially 
exponential rate of convergence of the probability distribution of the maximum likelihood 
estimator from finite samples to the case of infinite samples. We apply the algorithm to 
the cases of normal and exponential distributions. For the exponential distribution the 
lower and upper bounds for the right tail probabilities of the maximum likelihood esti- 
mator, and the two approximations, are identical. This is not the case for the normal 
distribution. Finally, we apply our changepoint analysis for the case of the exponential 
distribution to data on explosions in British coal mines. 

Some key words: Maximum likelihood estimator; Maximum of a random walk; Negative drift; Parameter 
change. 

In this paper, we derive a computationally efficient algorithmic procedure for finding the 
asymptotic distribution of the maximum likelihood estimator of a changepoint. The problem 
of maximum likelihood estimation of a changepoint was first considered by Hinkley (1970, 
1971, 1972). Subsequently, the problem was considered under various settings by 
Bhattacharya & Brockwe11(1976), Ibragimov & Hasminski (1981), Worsley (1986), Cobb 
(1978), Seigmund (1988), Bhattacharya (1987), Yao (1987) and Rukhin (1994). 

In his pioneering work, Hinkley (1970) discussed the asymptotic distribution theory for 
the maximum likelihood estimator of a changepoint assuming the parameters both before 
and after the unknown changepoint to be known. Then, considering the case of unknown 
parameters, Hinkley (1972) demonstrated that, asymptotically, the probability distri-
butions of the maximum likelihood estimator when the parameters were known and 
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unknown were identical. The result suggests that one need only study the asymptotic 
distribution for the simpler situation with parameters known. Cobb (1978) derived the 
conditional distribution of the maximum likelihood estimator given the likelihood shape 
adjacent to the estimated changepoint. Cobb's conditional inferences are known to be 
nominally equivalent to certain Bayesian solutions. Worsley (1986) and Siegmund (1988) 
considered aspects of unconditional confidence interval estimation of a changepoint. Our 
analysis is also based on unconditional inference. 

The asymptotic distribution derived by Hinkley (1970) is complicated from a compu- 
tational point of view. Also, the computations are based on the assumption that a certain 
probability distribution function can be approximated by a sum of exponential terms. 
Hinkley (1970) implemented such an approximation for the case of normal distribution. 

Although the case of unknown parameters is of prime interest, in view of the distri- 
butional equivalence result of Hinkley (1972) we derive our results and procedures for 
the case where the parameters are assumed to be known. After presenting random-walk 
results in 5 3, we deal in 5 4 with the rate of convergence problem by deriving a large 
sample approximation for the uniform distance between the finite sample case and the 
infinite sample case probabilities of the maximum likelihood estimator. The convergence 
rate is shown to be essentially exponentially fast. Earlier Yao (1987) showed the conver- 
gence rate for a related quantity to be only 0(nPa) .  Then, in 5 5, we derive computationally 
efficient algorithmic procedures for finding the asymptotic distribution of the maximum 
likelihood estimator. 

In 5 6, we implement the algorithmic procedure for the normal and exponential distri- 
butions. Finally, in 5 7, we apply our changepoint analysis to data on time intervals 
between successive explosions in British coal mines, given in Maguire, Pearson & Wynn 
(1952), extended and corrected by Jarrett (1979) and analysed by Worsley (1986). Our 
confidence region is found to be shorter in length than the confidence region derived by 
Worsley (1986). 

For all proofs, readers are referred to the authors' technical report TR97-4 from the 
Department of Pure and Applied Mathematics, Washington State University. 

2. MAXIMUM ESTIMATORLIKELIHOOD 

Let Y,, . . . , Y,represent a sequence of time-ordered continuous and independent random 
variables defined on a common probability space (Q, d,P). Let F ( . ,  A), for J. E O, be the 
distribution function, assumed to be absolutely continuous, and let f( . ,  A) denote the 
probability density function. Let J. change from A, to A,, for A, =+ A,, at some unknown 
point v such that 

f (yi, ;to) for ;toE O, i = 1, . . . ,v, 
i = {f ( y i )  f ~ r J . ~ ~ O , i = v + l ,. . . ,  n, 

where v E { I , .  . . ,n - 1). 
Our problem is to estimate the changepoint v when A, and A, are unknown. Even when 

;to and A, are known, the problem is known to be quite intractable. We first derive the 
maximum likelihood estimator of v, along the lines of Hinkley (1972). 

For fixed known values of A, and A,, the likelihood function is given by 
v n 



Estimation of a changepoint 13 1 

Following Bhattacharya (1994), the maximum likelihood estimator of v is given by 

v^, = arg max Cj n/l,
l<j<n-1 i z l  

where n/l = log { f ( x ;  ;lo/f ( x ;  A,) ) ,  and any non-uniqueness in maximisation is resolved 
by a suitable convention. 

When ;loand A,  are unknown, we first consider the marginal likelihood Z(v) given by 

The maximum likelihood estimator D ,  in this case is then given by 

D,  = arg max Z(j).
l<j<n-1 

Let Aojv and 2 , l v  be the conditional maximum likelihood estimators of A, and A, for a 
given v, for v = 1, . . . ,n - 1. Then clearly v", is based on the above conditional maximum 
likelihood estimator. Hinkley (1972) let v +co and n - v -+cc and found that both D ,  and 
v^, have the same asymptotic distribution. We state the relevant theorem of Hinkley (1972, 
p. 520) in the following. 

THEOREM1. Let the regularity conditions for the consistency of IOlv and 2,  I v hold. Then 
D ,  and v ,̂ asymptotically have the same probability distribution. 

In view of the above theorem, we can restrict our attention to v^, in that 9,- v is 
associated with the maximum of the maxima of two independent random walks, whereas 
v", - v is much more complicated. We begin by noting that 

v + j  

v ,̂, - v = arg max C n/l = arg max t ( j ) ,
-v+l<j<n-v-1 i = 1  -v+l<j<n-v-1 

where 

with Xi = -W v - i + l ,for 1 < i < v - 1, and XT = Wv+ifor 1 < i < n -v. The above shows 
that the dependence of v ,̂ - v on v and n - v is quite implicit. 

Note that the random walks S = {S, : n 3 0) and S* = {S; : n 3 0) are independent of 
each other and both have negative means. Thus, both walks eventually drift to -cc. 

We recall here some of the classical results from the fluctuation theory for random 
walks, gleaned from references such as Spitzer (1976), Feller (1971), Asmussen (1986) and 
Betroin & Doney (1994, 1996). 

Let X I  and XT represent the initial random variables associated with the two indepen- 
dent random walks S and S* respectively. We shall require the following assumptions 
regarding X1 and XT which, for convenience, we state in terms of X I .  



Assumption 1. Assume -co <E(X,) <0. 

Assumption 2. The moment generating function 4(s)=E(e"1) converges for 
0 <Re(s) < a for some a >0. 

Assumption 3. For s E R and s E [0, a), 4(s) attains a unique minimum at z E [0, a] such 
that 4(z) =y < 1, $'(z) =0. 

Let Assumptions I*, 2* and 3* denote the corresponding assumptions for XT. 
We now introduce notation and results for the random walk S. Similar notation and 

results with a superscript * hold for S*. 
First let z0= inf{n 3 1: S, 6 0) be the weak descending ladder epoch, and let 

a, = inf{n 3 0:  S,, >x), for x 3 0, where a, denotes the strict ascending ladder epoch. Let 
Mn=max{Sj: 0 6 j <n) be the maximum of the first n partial sums and let M =max S, 
be the overall maximum. For x 3 0, we define 

(i) G,(x) =pr(M, <x) =pr(a, >n), for n 3 0; 
(ii) G(x)=pr(M 6 x); 

(iii) u,(x) =pr(zo>n, S,, E (0, XI), for n 3 0, x 3 0. 
Define 6=0 and let I/, = G,(O) =pr(oo>n), for n 3 1. Note that uo(x) = 0, for x >0, 

with uo(0) = 1. Then let q, = u,(m) =pr(zo>n), for n 3 1. 
It is well known from Spitzer's identity that V, = ePB('), where B(s) =C(snb,,)/n and 

b, =pr(S, >O), for n 3 1. Furthermore, as was demonstrated by Embrechts & Hawkes 
(1982), see also Downham & Fotopoulos (1981), one may deduce the following iterative 
procedure for the sequence of probabilities {q,, n 3 0): 

We now recall the following proposition due to Stoyan (1976, p. 83). 

PROPOSITION1. Under Assumptions 1-3, the distribution function G(x) of M satisfies 

where 

9= sup{8 E [W :4(8) 6 I),  a, = sup h(t), a, = inf h(t) (0 6 a,, a, < I) ,
t 2 O  t 2 O  

Furthermore, if m =E(M) and 1 -pr(M =0) =p,, then 

Let v^, denote the maximum likelihood estimator of v based on infinite data in which 
both v and n - v are themselves assumed to be infinitely large. In practice, therefore, we 
require that the true changepoint be away from both tails of the data for our asymptotic 
theory to be valid. 
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THEOREM2. Let v̂ , be the maximum likelihood estimator of the changepoint v. Then, for 
j E Z, we have 

While Theorem 2 provides the probability distribution for v̂ , -v, the expressions therein 
are not easily computable. The main difficulty is that the distribution function G(x) of M 
cannot be easily evaluated. However, we exploit the results of Proposition 1 and derive 
computable inequalities for the probability distribution of v̂ , - v. Let fin =1e-*" du,(x), 
for n 31, be the Laplace transform of un(x), for x >0, and let fio(;l) = 1. From Spitzer's 
identity, the sequence {fi,(A) :n 30, A E R+ ) satisfies the relation 

03 

O(S;2) = 1 snfin(;t)= exp {l?(s; A)), 
n = O  

where B(s; A) =C {sn6,(;t))/n and 6,(A) =E{e-'Sn~(S, >0)). Thus, the following iterative 
procedure, which parallels that given by (3.1), facilitates the computation of 
{iin(A), n 3 0 ,  A E R+) :  

The following theorem then provides computable inequalities for the distribution of 
v̂ , -v. Through examples, we will illustrate subsequently that the inequalities given by 
the theorem are quite sharp. 

THEOREM3. For j E Z and 0 6 a, a* 6 1, dejne Aj(a) and AT(a*) by + 

Then, under Assumptions 1-3 and 1"-3*, the following inequalities hold for the distribution 
of v ,̂-v. F o r j E Z f ,  we have 

(ii) AT(aT) <pr(v ,̂ - v = -j) <A?(@). (4.3) 

The following corollary, which provides simpler bounds, follows easily from the two 
theorems. 

COROLLARY1. Under Assumptions 1-3 and 1*-3*, we have, for j E Z f ,  
(i) e- {B(l)+B*(l )}  * <pr($, - ,,=j) 6 e-B*(l) * 

qj 4 j ,
(ii) e-{B(l)+B*(l )}qj  6 pr($, - v = -j) 6 e-B(l )  qj. 

In our next result, we derive approximations for pr(v ,̂ - v = $k) when k is large. The 
result is largely based on Veraverbeke & Tuegels (1975). 

THEOREM4. Let Assumptions 1-3 and 1"-3" hold. Furthermore, let u(x) =Cu,(x) and 
u*(x) =Cu:(x). Then, for k large, we have 1;+{B(1 )+B*(1 ) }Y*kk -3 /2 {e -B* ( l /Y* )e-c~-k)=v-(i) Pr(Q, 

u*(x) dV(x)), 1;+B*(l)}ykk-3/2{e-B(llY)+{B(1)c,e--k)-

4x1 dV(x)), 
(ii) pr($, - v = 



where 

and V*(x) is dejined similarly to V(x). 

We now investigate the rate of convergence for the probability distribution of 0,. Yao 
(1987) derived inequalities of O(nP3) for pr(0, + 0,). Here, we approximate the uniform 
distance between the probabilities for the finite and infinite sample cases. Let %' be the 
Borel 0-field defined on R and consider the uniform distance given by 

sup Ipr(v^,-VE A)-pr(v^,-VE A)I. 
A E ~ 


PROPOSITION2. Let 8be the Borel a-jield on R. Then, 

sup Ipr(0,-v E A)-pr(v^, - v  E A)I <pr(v^,+0,). 
A E ~ 


Note that the upper bound above is pr(0, + G,), the quantity considered by Yao (1987). 
The proof of the proposition is based on a coupling argument. 

THEOREM5. Let Assumptions 1-3 and 1*-3* hold. Then, for large n and some constant 
d, the unqorm distance in (4.4) satisjies the following approximation: 

sup Ipr(0, - v E A) -pr(0, - v E A)I -d m i n { 6 " ~ - ~ / ~ ,  -6,-"(n v ) - ~ / ~ ) ,  
A E ~ 


where 6 = min(y, y*). 

Note that the order of approximation is negative exponential times 0(nP3l2) as com- 
pared to the O(nP1l2) derived by Yao (1987) for the upper bound pr(0, + 0,). 

In this section, we illustrate how to compute the upper and lower bounds in (4.2) and 
(4.3). Our algorithm as such may be applied to any distribution that satisfies the required 
assumptions. While Theorem 3 provides upper and lower bounds for the asymptotic 
probabilities, we may incorporate (3.2) and (3.3) of Proposition 1 in Theorem 3 and obtain 
two different approximations for the asymptotic probabilities. 

Since (4.2) suggests that Aj(a,) 6 pr(0, - v = j) 6 Aj(a2) when 0 < a, 6 a, < 1, we are 
motivated to approximate pr(0, - v = j) by Aj(a) for a suitable choice of a. 

From (3.2) we have a, 6 m$ < a,. Choosing a = m$ and similarly a* = m*$*, we obtain 
our first approximation: 

Next, from (3.3) we have a, < p, 6 a,. This time we let a = p, and a* = p&*, and we 
obtain our second approximation: 

While there is no guarantee that either of the approximations should perform well, sub- 
sequent examples show that they both perform extremely well. 

Evaluation of the bounds in (4.2) and (4.3) requires computation of B(1), a,, a,, 9,{qj), 
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{aj($*)) and their '*' counterparts. We also need to compute m, p, and m*, p&* in order 
to compute the two approximations given by (5.1) and (5.2). 

Among the above, we only need to comment on the computation of {qj) and {aj($*)). 
The computation of {qj) is facilitated by implementing the iterative procedure given by 
(3.1). Similarly, {Qj($*)) may also be computed through procedure (4.1). Similar iterative 
procedures may be applied to compute {qT ) and {fiT($)). 

In the algorithm below, where there is no confusion, we omit the relevant '*' 
counterparts. 

ALGORITHM 
Step So. For spec$ed A, and A,, let Y- f ( . ,  A,) and Y* -f ( . ,  A,). 
Step S,. Derive the probability density functions of X, and XT, where 

X, = -log- f(Y;A,) x: = log 
f (Y*; A,) 

f(Y;A l l '  f (Y*; A,) 

Step S,. Compute {b,), B ( l )  and {b,*), B*(l): b,=pr(S,>O) (n= 1 ,2 , .  ..) and 
B ( l )=Cbn/n. 

Steps,. F i n d 9 , 9 * : $ = s u p { B ~ R : ~ ( B ) 6 1 ) .  
Step S4. Compute ha($*), &,*($): h,($*) = I(&>0)).~ { e - ' * ~ n  

Step S5. Evaluate h(t), h*(t): 


Step S6. Find a,, a, and a:, a,*: a, = sup,,, h(t) and a, = inf,,, h(t). 
Step S,. Compute m =E(M), m* =E(M*): m =CE(ST)/n. 
Step C,. Compute {q,), {aj($*)) and {qj* ), (12; ($)I:implement the iterative procedures 

n - 1  n - 1  

q0= 1, nq, = b,- jqj; a,($*) = 1, nfi,(Y*) = C 6n-j($*)iij($*). 
j = O  j = O  

Step C2. For j= l , 2 , .  . . , compute the lower and upper bounds L( j )  and U(j) and 
the two approximations MI(  j) and M2( j): L(j) =Aj(al), U( j) =Aj(a2); MI(  j) =Aj(mA), 
M2(j) =Aj(pM), where Aj(a) =e-B*(l){qT- an? ($)I. 

Step C,. For -j = 1,2, . . . , compute L( j) ,  U( j) and MI(  j) ,  M,( j): L( j )=AT (a:), 
U(j)=A?(@); M,( j )  =AT(m*$*), M,(j) =A?(p&*). 

Note that Steps So-S, depend on the specific f ( . ,  A). Once these steps are implemented, 
Steps C,-C, are common to all cases. 

6. EXAMPLES 
6.1. Normal distribution 


Step So. We let Y -N(A,, 0,) and Y* -N(A,, 0'). 


Step S1. We find easily that X, -N(-2q2, 4q2) and XT -N(-2q2, 4q2), where 
q = 1 A, -Ao1/(2a). Upon rescaling, without loss of generality, we may assume that both 
X, and XT follow N(p, I ) ,  where ,E = -q. Since X, and XT are identically distributed, so 
are the random walks {S,) and {S,*). Thus, in the steps below, we omit the computations 
for the '*' counterpart. It follows that the asymptotic probabilities for v ,̂ are symmetric 
about the true changepoint v. 



Step S,. We find b,,= 1 -@(-n*p), for n = 1, 2, . . . ,where @(.)is the cumulative distri- 
bution function of the N ( 0 ,  1 )  distribution. 

Step S,. Since 4 (8 )= ehe+3", we find 9= -2p. 

Step S,. We find 6,($*)=e4np2{1 -@(-3nap)) ,  for n =  1,2 , .  . . . 
Step S,. We obtain 

1 -@ ( t-p)
h( t )= e2pt{1-@ ( t+p)) ( t  2 0 ) .  

Step S,. Since the above function h( t ) ,for t 2 0, is monotone, we find that a, = 1, which 
is obtained at t = co,and a, = { I  -@ ( - p ) ) / { 1-@ ( p ) ) ,which is obtained at t =0. 

Step S,. We have m = {(n@n)aexp(- np2/2)+np&(- n+p) )/n. I,"=, 

It only remains to implement the common Steps C,,  C ,  and C ,  of the Algorithm. 

Table 1 presents the bounds L(.)and U( . )and the two approximations M I ( . )and M I ( . )  
for various values of 6, where we let 6 = -p. Also, for each 6, the 'Sum' in Table 1 
represents the sum of all probabilities for each column while Table 1 contains the prob- 
abilities only for selected values of k. In view of symmetry, we present only the right half 
of the asymptotic distribution. 

Table 1. Asymptotic probabilities pr(9, - v = K )  ( K  =0,  $1 ,  +2, . . . ) for  the maximum 
likelihood estimate of the changepoint in the case of the normal distribution 

Sum 0.7960 0.9951 1.0213 1.0317 Sum 0.8719 0.9974 1.0063 1.0081 

1.5 0 0.8568 0.8568 0.8568 0.8568 2.0 0 0.9531 0.9531 0.9531 0.9531 
1 0,0364 0,0592 0.0599 0.0600 1 0.0136 0.0219 0.0220 0.0220 
2 0.0066 0.0096 0.0097 0.0097 2 0.0009 0.0014 0.0014 0.0014 
3 0.0014 0.0019 0.0020 0.0020 3 0.0001 0.0001 0.0001 0.0001 
4 0.0003 0.0004 0.0004 0.0004 
5 0~0001 0~0001 0~0001 0~0001 

Sum 0.9463 0.9994 1.0011 1.0013 Sum 0.9825 0.9999 1.0001 1.0001 

2.5 0 0.9874 0.9874 0.9874 0.9874 3.0 0 0.9973 0.9973 0.9973 0.9973 
1 0.0039 0,0062 0,0062 0.0062 1 0.0009 0.0013 0.0013 0.0013 
2 0~0001 0~0001 0~0001 0~0001 

Sum 0.9954 0.9999 1.0001 1.0001 Sum 0.9990 0.9999 1.0000 1.0000 
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6.2. Exponential distribution 
The case of the exponential distribution has not been dealt with in the literature thus far. 

Step So. We let Y -Ex(l/A0) and Y* -Ex(l/A,). Without loss of generality, we 
assume 2, >A,. 

Step S,.  Let fxl(.) and fxp(.) be the probability density functions of X, and XT respect- 
ively. Then 

fxl(x)= 6e 
-6 ( ~  , XE[I-d,GO), fX* x*I - (- 6 - l)e-(6-1)(d-x*),x* E (-GO, d l ,  +d) 

where 6 = 2,/(A, -2,) > 1 and d = log{6/(6 - 1)). 

Step S,. We have b, =pr(xi, >26nd), bX = 1 -pr {xi, >2n(6 - 1)d). 

Step S,. We find 

Thus, 4(9) = 1 yields 9 = 1. Also, 

and again 9* = 1. 

Step S,. We have 

In the above, note the singularity in &(a)at 6 =2. 

Step S,. We find 

It is somewhat surprising that h(t) is independent of t .  

Step S6. We find a, = a, = (6 - 1)/6. Also, aT = 1, which is attained at t* =d; and 

which is attained at t* = 0. 



Step S,. We have 

The common Steps C,, C, and C, of the Algorithm may now be implemented. The 
computations for selected values of 6 are summarised in Table 2. 

Table 2. Asymptotic probabilities pr(v ,̂ - v = K:) ( K :  =0, f1, *2, . . .) for the maximum 
likelihood estimate of the changepoint in the case of the exponential distribution 

6 u.1 1 2 w.1 6 K: u . 1  M I ( . )  Mz( . )  U ( . )  

2.4 -20 0.0041 0.0044 0.0046 0.0046 2.0 -20 0.0025 0.0027 0.0028 0.0029 
-10 0.0093 0.0103 0.0108 0.0110 -10 0.0076 0.0085 0.0089 0.0091 
-5 0.0169 0.0197 0.0209 0.0213 -5 0.0167 0.0197 0.0209 0.0213 
-4 0.0196 0.0233 0.0248 0.0254 -4 0.0202 0.0243 0.0260 0.0265 
-3 0.0231 0.0281 0.0303 0.0310 -3 0.0250 0.0309 0.0333 0.0340 
-2 0.0277 0.0353 0.0385 0.0396 -2 0.0318 0.0411 0.0449 0.0461 
-1 0.0336 0.0475 0.0534 0.0554 - 1 0.0417 0.0598 0.0672 0.0694 

0 0.1023 0.1023 0.1023 0.1023 0 0.1534 0.1534 0.1534 0.1534 
1 0.0734 0.0734 0,0734 0.0734 1 0.1002 0.1002 0.1002 0.1002 
2 0.0570 0.0570 0.0570 0.0570 2 0.0726 0.0726 0.0726 0.0726 
3 0.0462 0.0462 0.0462 0.0462 3 0.0556 0.0556 0.0556 0.0556 
4 0.0385 0.0385 0.0385 0.0385 4 0,0441 0.0441 0.0441 0.0441 
5 0.0327 0.0327 0.0327 0.0327 5 0.0358 0.0358 0.0358 0.0358 

10 0.0170 0.0170 0.0170 0.0170 10 0.0154 0.0154 0.0154 0.0154 
20 0.0072 0.0072 0.0072 0.0072 20 0.0049 0.0049 0.0049 0.0049 

Sum 0.9487 0,9989 1.0203 1.0275 Sum 0.9431 0.9974 1.0198 1.0264 

1.4 -20 0.0001 0.0002 0.0002 0.0002 
-10 	 0.0016 0,0019 0.0020 0.0021 

-8 0.0020 0,0037 0.0039 0.0039 
-7 0.0042 0.0051 0.0054 0.0055 
-6 0.0059 0.0072 0.0077 0.0078 
-5 0.0084 0,0104 0.0111 0.0113 
-4 0.0123 0.0156 0.0167 0.0169 1.05 -4 0.0002 0.0003 0.0003 0.0003 
-3 0.0187 0.0243 0.0262 0.0266 -3 0.0008 0.0013 0.0014 0.0014 
-2 0.0298 0.0406 0.0443 0.0450 -2 0.0037 0.0058 0.0062 0.0062 
-1 0.0515 0.0783 0.0875 0.0893 -1 0.0190 0.0335 0.0359 0.0360 

0 0.3564 0.3564 0.3564 0.3564 0 0.8074 0.8074 0.8074 0.8074 
1 0,1662 0.1662 0.1662 0.1662 1 0.1180 0.1180 0.1180 0.1180 
2 0.0932 0.0932 0.0932 0.0932 2 0.0243 0.0243 0.0243 0.0243 
3 0.0573 0.0573 0.0573 0.0573 3 0.0058 0.0058 0.0058 0.0058 
4 0.0373 0.0373 0.0373 0.0373 4 0.0015 0.0015 0.0015 0.0015 
5 0.0252 0.0252 0.0252 0.0252 5 0.0004 0.0004 0.0004 0.0004 
6 0.0175 0.0175 0.0175 0.0175 6 0.0001 0.0001 0.0001 0.0001 
7 0.0124 0.0124 0.0124 0.0124 
8 0.0089 0.0089 0.0089 0.0089 

10 0.0048 0.0048 0.0048 0.0048 
20 0.0004 0~0004 0.0004 0.0004 

Sum 0.9433 0.9963 1.0146 1.0180 Sum 0.9814 0.9987 1.0016 1.0017 
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6.3. Discussion of the examples 
In summarising the information in Tables 1 and 2, we concentrate mainly on the evidence 

provided by the 'Sum' of all probabilities. 
Clearly, the upper bound is quite sharp in both cases, compared to the lower bound. 

Generally, the approximations MI(.)  and M,(.) provide very good accuracy. For the 
normal distribution, Table 1 shows that the probabilities based on MI(.)  are extremely 
accurate, while those based on M,(.) show a tendency slightly to overestimate the true 
probabilities, mostly for small changes. When 6 is large (6 3 2), the approximations MI(.), 
M,(.) and the bounds L(.) and U ( . )  all perform extremely well. Finally, note that the 
values given by MI(.) tally very well with those of Hinkley (1970). 

In the exponential case, note that by definition 6 > 1. While the asymptotic probabilities 
in Table 2 are not symmetric in this case, note that generally the probability distributions 
have longer tails, which is especially true for large values of 6 (6 3 2). While both approxi- 
mations are extremely accurate, MI(.) is even better than M,(.). 

Furthermore, we highlight a result which is pleasing and noteworthy. As a consequence 
of a, = a,, in the exponential case, the right tail probabilities for both the lower and upper 
bounds and the two approximations were identical. Thus, subject to minor computational 
errors, these probabilities are exact. One would not have anticipated this. 

7. BRITISHCOAL MINE EXPLOSIONS DATA 

The 109 time intervals, in days, between successive explosions in British coal mines 
between the years 1875 and 1950 were analysed by Maguire et al. (1952). Jarrett (1979) 
presented an extended dataset covering the years 1851 to 1962, giving 190 data points, 
and corrected some errors in the data given by Maguire et al. (1952). Maguire et al. (1952) 
concluded that the time intervals between explosions followed an exponential distribution 
with a constant mean over time. Cox & Lewis (1966, Ch. 23) reanalysed the data and 
found strong evidence that the mean did not remain constant in time. Assuming 
exponential distributions for the time intervals, Worsley (1986) used the likelihood ratio 
statistic for the data of Maguire et al. (1952) to test for a change in mean at an unknown 
point with A,, the mean before the change, and A,, the mean after the change, both 
unknown. The test was highly significant and he found the maximum likelihood estimate 
of the changepoint to be v",,, =46, which corresponds to the year 1890. Based on the 
distribution of the likelihood ratio statistic, Worsley (1986) constructed a 95% confidence 
region of (36, . . . ,531 for the unknown changepoint. For the extended dataset of Jarrett 
(1979), his results were very similar. The estimate of the changepoint year and the ends 
of the confidence interval all moved just one year later, with GI,, = 124 and confidence 
region (116,. . . , 133). He also applied the conditional solution of Cobb (1978) to the 
original data of Maguire et al. (1952) and found the corresponding 95% confidence region 
to be (26,. . . ,39,41,.  . . ,53). 

Here, we apply our asymptotic analysis under the exponential distribution to Jarrett's 
(1979) extended data. We consider the dataset to be large enough for our asymptotics to 
hold and thus we let v",,, = v", = v". We obtain v" = 124, which matches Worsley's result. 
Further, the conditional estimates of the means are ~ o l , 2 ,= 118 and ~ , 1 , 2 ,=403. These 
estimates are consistent so we may take A, = 118 and A, =403 as known values. This gives 
6 = 1.41 and the corresponding maximum likelihood estimate for the known-means case 
is v^ = 124. Then Table 2, with 8 = 1.40, provides the probability distribution of v". For 
example, using MI(.) as the approximate probability distribution of v", we find that 



pr(C - v =0) = 0.3564. Furthermore, the shortest 95% confidence region for v is found to 
be {118,. . . ,132). For comparison, Cobb's conditional region for the extended data is 
{116,.. . , 129,133). The size of our confidence region matches exactly that of Cobb's. 
However, our unconditional confidence region is biased to the right, whereas Cobb's 
conditional confidence region is biased to the left. worsley's region is larger in size by 
three additional points when compared to both ours and Cobb's. 

In summary, our unconditional solution seems as good as the conditional solution of 
Cobb (1978). However, our solution can be applied more routinely than Cobb's. 

The authors thank the editor and an anonymous referee for their insightful comments 
which have led to an improved presentation of the paper. 
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